1,068 research outputs found

    Pressure measurements of impinging jet with asymmetric nozzle

    Get PDF
    For modern aircraft, impinging surfaces are commonly used as a device for obtaining vector thrust from engine exhaust. The nature of dynamic loading is important to understand for design purposes. In this study, the frequency, mode, and level of pressure fluctuations generated by an elliptic jet are examined. The elliptic jet is used because it has several operational advantages over a circular jet

    IC-integrated flexible shear-stress sensor skin

    Get PDF
    This paper reports the successful development of the first IC-integrated flexible MEMS shear-stress sensor skin. The sensor skin is 1 cm wide, 2 cm long, and 70 /spl mu/m thick. It contains 16 shear-stress sensors, which are arranged in a 1-D array, with on-skin sensor bias, signal-conditioning, and multiplexing circuitry. We further demonstrated the application of the sensor skin by packaging it on a semicylindrical aluminum block and testing it in a subsonic wind tunnel. In our experiment, the sensor skin has successfully identified both the leading-edge flow separation and stagnation points with the on-skin circuitry. The integration of IC with MEMS sensor skin has significantly simplified implementation procedures and improved system reliability

    Polysilicon structures for shear stress sensors

    Get PDF
    Four types of micromachined polysilicon structures have been designed and fabricated for wall shear stress sensors in flow measurement and control. Their frequency responses, heat transfer characteristics and windtunnel responses have been extensively studied. They are all useful but one may be better than the others depending on the application requirement

    A parametrized three-dimensional model for MEMS thermal shear-stress sensors

    Get PDF
    This paper presents an accurate and efficient model of MEMS thermal shear-stress sensors featuring a thin-film hotwire on a vacuum-isolated dielectric diaphragm. We consider three-dimensional (3-D) heat transfer in sensors operating in constant-temperature mode, and describe sensor response with a functional relationship between dimensionless forms of hotwire power and shear stress. This relationship is parametrized by the diaphragm aspect ratio and two additional dimensionless parameters that represent heat conduction in the hotwire and diaphragm. Closed-form correlations are obtained to represent this relationship, yielding a MEMS sensor model that is highly efficient while retaining the accuracy of three-dimensional heat transfer analysis. The model is compared with experimental data, and the agreement in the total and net hotwire power, the latter being a small second-order quantity induced by the applied shear stress, is respectively within 0.5% and 11% when uncertainties in sensor geometry and material properties are taken into account. The model is then used to elucidate thermal boundary layer characteristics for MEMS sensors, and in particular, quantitatively show that the relatively thick thermal boundary layer renders classical shear-stress sensor theory invalid for MEMS sensors operating in air. The model is also used to systematically study the effects of geometry and material properties on MEMS sensor behavior, yielding insights useful as practical design guidelines

    A Structural Equation Model for Consumers’ Mobile-based Information Search: A Case of Outbound Chinese Tourists

    Get PDF
    This research responds to the call for more studies to validate a comprehensive model incorporating mobile Internet and other information channels to investigate their effects within the search process. Using 104 Chinese outbound tourists as the sample, this study investigates how they utilize multiple sources for trip planning. The research findings indicate that mobile-based search actions have been undertaken step by step: internal search mobile search preliminary collaborative TIS saving information summarizing information. Two search patterns were identified by using other information sources: 1. mobile Internet advanced collaborative TIS editorial communications; 2. mobile Internet PC Internet editorial communications. In spite of the studys limitations in relation to generalizing the results, this study presents new avenues for further research

    Unsteady separation process and vorticity balance on unsteady airfoils

    Get PDF
    Low momentum fluid erupts at the unsteady separation region and forms a local shear layer at the viscous-inviscid interface. At the shear layer, the vorticity lumps into a vortex and protrudes into the inviscid region. This process initiates the separation process. The response of airfoils in unsteady free stream was investigated based on this vortex generation and convection concept. This approach enabled us to understand the complicated unsteady aerodynamics from a fundamental point of view

    Flexible parylene-valved skin for adaptive flow control

    Get PDF
    This paper describes the first work of using wafer-sized flexible parylene-valved actuator skins (total thickness ~20 µm) for micro adaptive flow control. The check-valved actuator skins feature vent-through holes with tethered valve caps on the membrane to regulate pressure distribution across the skins. The skins were integrated onto MEMS wings and were tested in the low-speed wind tunnel for aerodynamic evaluation. The test results have shown very significant effects on the aerodynamic performances. Compare to the reference MEMS wings (no actuators), both the lift and thrust of the parylene check-valved wings were improved by more than 50%. This is the first experimental result to demonstrate that the application of MEMS actuator skins for flow control is very promising

    Apparatus and methods for manipulation and optimization of biological systems

    Get PDF
    The invention provides systems and methods for manipulating, e.g., optimizing and controlling, biological systems, e.g., for eliciting a more desired biological response of biological sample, such as a tissue, organ, and/or a cell. In one aspect, systems and methods of the invention operate by efficiently searching through a large parametric space of stimuli and system parameters to manipulate, control, and optimize the response of biological samples sustained in the system, e.g., a bioreactor. In alternative aspects, systems include a device for sustaining cells or tissue samples, one or more actuators for stimulating the samples via biochemical, electromagnetic, thermal, mechanical, and/or optical stimulation, one or more sensors for measuring a biological response signal of the samples resulting from the stimulation of the sample. In one aspect, the systems and methods of the invention use at least one optimization algorithm to modify the actuator's control inputs for stimulation, responsive to the sensor's output of response signals. The compositions and methods of the invention can be used, e.g., to for systems optimization of any biological manufacturing or experimental system, e.g., bioreactors for proteins, e.g., therapeutic proteins, polypeptides or peptides for vaccines, and the like, small molecules (e.g., antibiotics), polysaccharides, lipids, and the like. Another use of the apparatus and methods includes combination drug therapy, e.g. optimal drug cocktail, directed cell proliferations and differentiations, e.g. in tissue engineering, e.g. neural progenitor cells differentiation, and discovery of key parameters in complex biological systems
    • …
    corecore